Analisis unsur hara N dan P serta tingkat kemiripan antar Lokasi KJA dan Non KJA di Perairan Waduk Cirata, Jawa Barat
DOI:
https://doi.org/10.33292/ost.v2i1.49Keywords:
Nutrien N dan P, Waduk Cirata, KJA, Sungai CitarumAbstract
Perairan Waduk Cirata merupakan perairan cascade hasil bendungan Sungai Citarum di Jawa Barat. Penelitian ini bertujuan untuk melihat karakteristik unsur hara N dan P terkait adanya aktivitas budidaya keramba jaring apung (KJA). Secara umum kandungan nitrat, nitrit dan ammonia di lokasi padat KJA memiliki nilai lebih tinggi dari lokasi non KJA Sedangkan secara vertikal antara kedalaman 1 m dengan 20 m memiliki nilai yang berbeda nyata. Di daerah KJA pada kedalaman 1 m nilai tersebut masing-masing berkisar 0,0940-0,2240; 0,0010-0,0020; 0,0280-0,0900 mg/l dan di kedalaman 20 m berkisar 0,1210-1,3970; 0,0010-0,0030; 0,0410-0,5310 mg/l. Konsentrasi nitrat, nitrit dan amonium pada kedalaman 1 m daerah non KJA masing-masing berkisar 0,0970-0,2180; 0,0010; 0,0420-0,1080 mg/l dan di kedalaman 20 m berkisar 0,3590-1,6380; 0,0010-0,0030; 0,1690-0,3780 mg/l. Berdasarkan hasil pengamatan diperoleh kandungan ortofosfat di daerah KJA dengan nilai lebih besar dan berbeda nyata dari daerah non KJA. Daerah dengan aktivitas padat KJA memiliki nilai kandungan ortofosfat lebih tinggi dikarenakan tingginya beban masukan nutrien yang berasal dari sisa pakan dan sisa hasil metabolisme ikan dalam KJA. Berdasarkan grafik dendrogram terlihat bahwa adanya aktivitas KJA mempengaruhi perbedaan karakteristik N dan P di Waduk Cirata.
Cirata Reservoir are cascade lake made by the Citarum River dam in West Java. This study aims to understand the characteristics of the nutrients N and P related to the activity of KJA cultivation. In general, the content of nitrate, nitrite and ammonia in intensive KJA locations has a higher value than non-KJA locations. Meanwhile, vertically between the depths of 1 m and 20 m have significantly different values. In the KJA area at a depth of 1 m these values ranged from 0.0940-0.2240, respectively; 0.0010-0.0020; 0.0280-0.0900 mg/l and at a depth of 20 m in the range 0.1210-1.3970; 0.0010-0.0030; 0.0410-0.5310 mg/l. The concentrations of nitrate, nitrite and ammonium at a depth of 1 m in non-KJA areas ranged from 0.0970-0.2180, respectively; 0.0010; 0.0420-0.1080 mg/l and at a depth of 20 m in the range 0.3590-1.6380; 0.0010-0.0030; 0.1690-0.3780 mg/l. Based on the observations, it was found that the orthophosphate content in the KJA area had a higher value and was significantly different from the non-KJA area. Areas with intensive KJA activity had a higher value of orthophosphate content due to the high load of nutrient input from feed residues and fish metabolism in the KJA. Based on the dendrogram graph, it can be known that the presence of KJA activity affects the differences in the characteristics of N and P in the Cirata Reservoir.
References
Abreu, M.H. Pureira, R. Yarish, C. Buschmann, A.H. & Pinto, I.S. (2011). IMTA With Gracilaria Vermiculophylla: Productivity And Nutrient Removal Performnce Of The Seaweed In Land-Based Pilot Scale System. Aquaculture, 312, 77-87.
APHA. (2012). Standard Methods For The Examination Of Water And Wastewater. Baltimore, Maryland. Port City Press.
Burns, N.M. Rockwell, D.C. Bertram, P.E. Dolan, D.M. & Ciborowski, J.J.H. (2005). Trends In Temperature, Secchi Depth And Dissolved Oxygen Depletion Rates In Central Basin Of Lake Erie, 1983-2002. Journal of Great Lakes Research, 312, 35-49.
Badan Pengelola Waduk Cirata. 2008. Laporan kegiatan Inventarisasi Sensus Kolam Jaring Apung. Bandung.
Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG, Hietanen S, Janas U, Jilbert T, Maximov A, Norkko A, Norkko J et al. (2014). Hypoxia in the Baltic Sea : biogeochemical cycles, benthic fauna, and management. AMBIO, 43, 26-36.
Corell, D. L. (1998). The Role Of Phosphorus In The Eutrophication Of Receiving Water: A Review. Journal of Environmental Quality, 27, 261-266.
Garno, Y. S. (1999). Status Kualitas Air dan Struktur Komunitas Fitoplanktondi Bendungan Multiguna Cirata. Makalah Disampaikan Pada Semiloka Nasional Pengelolaaan dan Pemanfaatan Danau dan Waduk pada Tanggal 30 November 1999 di Bogor. 9 hal. (makalah tidak dipublikasikan).
Gomez, K.A. & Gomez, A. (1983). Statistical Procedures for Agricultural Research. John Wiley and Sons, Inc.
Hamblin, P.F. & Gale, P. (2002). Water Quality Modeling Of Caged Aquaculture Impacts In Lake Wolsey, North Channel Of Lake Huron. Journal Great Lakes Research, 28(1), 32-43.
Hidonis, K. (2014). Motode pengelolaan waduk berbasis sistem KJA multispesies (studi kasus Waduk Cirata). Tesis. Institut Pertanian Bogor. Bogor.
Iklima, R. Diansyah, G. Agussalim, A. Mulia, & Citra. (2019). Analisis Kandungan N-Nitrogen (Amonia, Nitrat, Nitrit) dan Fosfat di Perairan Teluk Pandan Provinsi Lampung. Jurnal Lahan Suboptimal, 8, 57-66.
Komarawidjaya, W. Sukimin, S. dan Arman, E. (2005). Status Kualitas Air Waduk Cirata Dan Dampaknya Terhadap Pertumbuhan Ikan Budidaya. Jurnal Teknologi Lingkungan. P3TL-BPPT 6(1), 268-273.
Krebs, C. J. (1989). Ecological Methodology. New York. Harper and Row Publisher
Lathrop, R.C. (1998). Water clarity responses to phosphorus and daphnia in Lake Mendota. Dissertation. University of Wisconsin. Madison [US].
Nurhakim, R. (2004). Penataan dan Pengelolaan Budi daya Dalam Karamba Jaring Apung yang Berwawasan Lingkungan dalam Rangka Mendukung Pengembangan Situ Babakan di Jakarta Selatan Sebagai Kawasan Wisata. Tesis Pasca Sarjana. IPB. Bogor.
Riyani, E. (2014). Kontaminasi Logam Berat Pada Ikan Budidaya Dalam Karamba Jarring Apung Di Waduk Cirata. Jurnal Teknobiologi, 1(1), 51-61.
Santoso, A.D. Susanto, J.P. & Komarawidjaja. (2012). Kestabilan oksigen terlarut di Waduk Cirata. Jurnal Tekhnologi Lingkungan 139-145.
Sugiura SH, Marchant DD, Kelsey K, Wiggins T, & Ferraris RP. (2006). Effluent Profile Of Commercially Used Low-Phosphorus Fish Feeds. Environ Pollut, 140, 95-101.
Wardoyo, S. T. H. (1975). Pengelolaan Kualitas Air. Proyek Peningkatan Mutu Perguruan Tinggi. Institut Pertanian Bogor.
Wang, X. Olsen, L.M. Reitan, K.I. dan Olsen, Y. (2012). Discharge Of Nutrient Wastes From Salmon Farms: Environmental Effects, And Potential For Integrated Multi-Trophic Aquaculture. Aquaculture Environment Interactions, 2, 267-283
Xie, F. Li, Lu. Song, K. Li, G. Wu, F. & Gisey, J.P. (2019). Characterization of Phosphorus Forms in Eutrophic Lake, China. Science of The Total Environment. (699), 1437-1447.
Young JD, Winter JG & Molot L. (2011). A Re-Evaluation Of The Empirical Relationships Connetcting Dissolved Oxygen And Phosphorus Loading After Dreissenid Mussel Invasion In Lake Simcoe. Journal of Great Lake Research, (37) 7-14.
Zhou, J. Han, X. Brookes, J.D. & Qin, B. (2022). High probability of Nitrogen and Phosphorus co-Limitation Occurring in Eutrophic Lakes. Enviromental Pollution, 292, 1-6.
Zou, W. Zhu, G. Cai, Y. Vilmi, A. Xu, H. Zhu, M. Gong, Z. Zhang, Y. & Qin, B. (2020). Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains Ecoregion: Implications for eutrophication management. Journal of Environmental Management, 260, 1-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Endang Sri Utami, Eny Ivan’s

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.