Accuracy of Learning Method Implementation in Higher Education Using K-Means Clustering and Silhouette Coefficient

Authors

  • Neni Purwati Universitas Muhammadiyah Lamongan, Lamongan, Indonesia
  • M Cahyo Kriswantoro Universitas Muhammadiyah Lamongan, Lamongan, Indonesia

DOI:

https://doi.org/10.33292/ost.v5i2.159

Keywords:

Clustering, CRISP-DM, K-Means, Silhouette Coefficient, Statistics

Abstract

Background: The Covid-19 pandemic significantly transformed the learning process in higher education, forcing institutions to quickly adapt to unprecedented challenges. Traditional face-to-face learning was no longer feasible due to health restrictions, and this condition accelerated the integration of technology into teaching and learning activities. As a result, online, offline, and hybrid learning methods emerged as the primary alternatives for sustaining academic activities. However, the rapid shift also highlighted a critical issue: the effectiveness of these learning methods varied widely depending on institutional readiness, available resources, and student adaptability. Determining the most effective method has therefore become essential to ensure quality outcomes, maintain student performance, and support the continuity of higher education in the post-pandemic era.
Aims: This study aims to identify the appropriate post-pandemic learning strategy in higher education by applying the CRISP-DM methodology and the k-means clustering algorithm.
Methods: The dataset consists of 65,778 student records collected from 2015–2020, preprocessed through data reduction, cleaning, and transformation. K-means clustering was applied using Orange, an open-source data mining tool. Furthermore, evaluated with the Silhouette Coefficient, and use additional analysis has been carried out using feature statistics.
Result: The results show that offline learning produced the highest total frequency, hybrid learning was in the medium range and online learning the lowest. Silhouette Coefficient scores indicated cluster quality in the medium structure category, with values of 0.47, 0.56, and 0.65 across three clusters. These findings suggest that offline learning remains the most effective method under normal conditions, hybrid learning is more suitable during pandemic or transitional periods, while online learning can serve as an alternative depending on institutional or governmental policies.
Conclusion: The study concludes that clustering-based analysis provides practical insights for designing adaptive, data-driven learning strategies in higher education.  This study provides practical implications and benefits by guiding institutions to design adaptive, data-driven learning strategies and establish more precise, responsive educational policies.

References

Abdullah, D., Susilo, S., Ahmar, A. S., Rusli, R., & Hidayat, R. (2021). The application of K?means Clustering for Province Clustering in Indonesia of The Risk of The COVID?19 Pandemic Based on COVID?19 Data. Springer. https://doi.org/10.1007/s11135-021-01176-w

Alasali, T., & Ortakci, Y. (2024). Clustering Techniques in Data Mining: A Survey of Methods, Challenges, and Applications. Journal of Computer Science, 9(1). https://doi.org/10.53070/bbd.1421527

Ambarita, J., Jarwati, & Restanti, D. K. (2020). Pembelajaran Luring. Adanu Abimata.

Andiopenta, & Aripudin. (2021). Pengembangan Model Pembelajaran Sosiolinguistik Berbasis Hybrid Learning Melalui BORG and GALL Model Pada Mahasiswa Prodi Pendididkan Bahasa dan Sastra Indonesia FKIP Universitas JAMBI 2019/2020. Jurnal Inovasi Penelitian, 1(9), 2011–2017. https://doi.org/10.47492/jip.v1i9.395

Aryanto, P., Indrayana, I., Imanuddin, B., Satriyanto, P., & Yamin, M. (2024). Minat Berwirausaha Mahasiswa Kewirausahaan Universitas Yatsi Madani Tahun 2023. Journal of Entrepreneurial Behaviour and Research (JUBIR), 1(1), 1–10.

Awalina, E. F. L., & Rahayu, W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail. Jurnal Teknologi Dan Informasi (JATI), 13(2), 122–137. https://doi.org/10.34010/jati.v13i2.10090

Awaludin, M., & Gani, A. G. (2024). Pemanfaatan Kecerdasan Buatan Pada Algoritma K-Means Klastering Dan Sentiment Analysis Terhadap Strategi Promosi Yang Sukses Untuk Penerimaan Mahasiswa Baru. Jurnal Sistem Informasi (JSI), 11(1). https://doi.org/10.35968/jsi.v11i1.1120

Fahmi, R. N., Jajuli, M., & Sulistiyowati, N. (2021). Analisis Pemetaan Tingkat Kriminalitas Di Kabupaten Karawang Menggunakan Algoritma K-Means. Journal of Information Technology and Computer Science (INTECOMS), 4(1), 67–79. https://doi.org/10.31539/intecoms.v4i1.2413

Fimawahib, L., & Rouza, E. (2021). Penerapan K-Means Clustering pada Penentuan Jenis Pembelajaran di Universitas Pasir Pengaraian. Jurnal INOVTEK POLBENG - Seri Informatika, 6(2), 234–247. https://doi.org/10.35314/isi.v6i2.2096

Gerawati, A. P., Wardani, K., Yusuf, P. S. N., Elmenes, F. A., Rustam, N., & Khairunnisa, A. (2025). Efektivitas Model Hybrid Learning Dalam Meningkatkan Kualitas Pembelajaran. Jurnal Riset Ilmiah (SINERGI), 2(7), 3019–3030. https://doi.org/10.62335/sinergi.v2i7.1474

Grahani, F. O., & Priambudi, S. (2024). Model Pembelajaran Hybrid Menggunakan Aplikasi Virtual Class Guna Meningkatkan Literasi Digital Mahasiswa. Jurnal Pendidikan Informatika Dan Sains, 13(2), 154–164. https://doi.org/10.31571/saintek.v13i2.8174

Gunawan, A. R., Sudarmin, S., & Rais, Z. (2024). Applied the Self Organizing Maps (SOM) Method for Clustering Educational Equity in South Sulawesi. Journal of Mathematics and Applied Science (JARRUS), 4(1), 6–19. https://doi.org/10.35877/mathscience2607

Hasdyna, N., Dinata, R. K., & Yafis, B. (2025). Optimizing K-Means Algorithm Using the Purity Method for Clustering Oil Palm Producing Regions. Jurnal Informatika Sunan Kalijaga (JISKA), 10(1). https://doi.org/10.14421/jiska.2025.10.1.1-15

Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Infromatika Dan Ilmu Komputer (JIMA-ILKOM), 3(1), 46–56. https://doi.org/10.58602/jima-ilkom.v3i1.26

Hermawati, F. A. (2013). Data Mining. CV Andi Offset,.

Huang, Z., Zheng, H., Li, C., & Che, C. (2024). Penerapan K-means Clustering Berbasis Machine Learning untuk Deteksi Penipuan Keuangan. Academic Journal of Science and Technology, 10(1), 33–39. https://doi.org/10.54097/74414c90

Hutagalung, J., Ginantra, N. L. W. S. R., Bhawika, G. W., Parwita, W. G. S., Wanto, A., & Panjaitan, P. D. (2021). COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm. Journal of Physics: Conference Series, 1783(012027). https://doi.org/10.1088/1742-6596/1783/1/012027

Ikhsan, E. (2021). Penerapan K-Means Clustering dari Log Data Moodle untuk Menentukan Perilaku Peserta pada Pembelajaran Daring. Jurnal Sistem Informasi (SISTEMASI), 10(2). https://doi.org/10.32520/stmsi.v10i2.1285

Khalif, A., Hasanah, A. N., Ridwan, M. H., & Sari, B. N. (2024). Clustering Poverty Levels in Indonesia Using the K-Means Algorithm. Generation Journal, 8(1), 54–62. https://doi.org/10.29407/gj.v8i1.21470

Lestari, W. A., Kartika, K. P., & Budiman, S. N. (2022). Klasterisasi Siswa Berdasarkan Hasil Belajar Menggunakan K-Means Berbasis Web (Studi Kasus: TK. Prima Insan Sholeh Talun). Jurnal Mahasiswa Teknik Informatika (JATI), 6(1). https://doi.org/10.36040/jati.v6i1.4261

Lubis, D. J., & Tamam, M. B. (2022). Penerapan K-Means Untuk Pengelompokkan Beasiswa Santri di Pondok Pesantren Miftahul Huda Bogor. Jurnal Ilmiah Teknologi-Informasi & Sains (TEKNOIS ), 12(1), 7–20. https://doi.org/10.36350/jbs.v12i1

Nartin, N., Faturrahman, F., Deni, A., Santoso, Y. H., Paharuddin, P., Suacana, I. W. G., Indrayani, E., Utama, F. Y., Tarigan, W. J., & Eliyah, E. (2024). Metode Penelitian Kualitatif. Cendikia Mulia Mandiri.

Nazla, N., Sai’dah, Z., Lestari, R. A., & Husain, M. (2025). Strategi Hybrid Learning dalam Pengembangan Pembelajaran Pendidikan Islam di Era Society 5.0 Studi Kasus di SMA Darussalam Blokagung. Journal of Islamic Education Management (MANAGIERE), 4(2), 113–134. https://doi.org/10.35719/managiere.v3i2.2348

Negara, G. A. J. (2025). Hybrid Learning Strategy (Offline-Online) for Hindu Religion Subjects at Dwijendra Senior High School, Denpasar, in the Post-Pandemic Era. Jurnal Penelitian Agama Hindu, 9(3), 282–298. https://doi.org/10.37329/jpah.v9i3.4548

Paramartha, G. N. W., Ratnawati, D. E., & Widodo, A. W. (2017). Analisis Perbandingan Metode K-Means Dengan Improved Semi-Supervised K-Means Pada Data Indeks Pembangunan Manusia (IPM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9), 813–824.

Plotnikova, V., Dumas, M., & Milani, F. P. (2022). Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements. Data & Knowledge Engineering, 139. https://doi.org/https://doi.org/10.1016/j.datak.2022.102013

Pramesti, D. F., Lahan, Tanzil, F. M., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data potensi kebakaran hutan/lahan berdasarkan persebaran titik panas (Hotspot). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9), 723–732. https://doi.org/10.1109/EUMC.200 8.4751704

Pratiwi, N. K. T. Y., Wasundhari, P. A. E. D., Nikova, K., & Mahendra, G. S. (2024). Rekomendasi Hotel Di Kawasan Lovina Menggunakan Sistem Pendukung Keputusan Dengan Metode WASPAS. Jurnal Sistem Informasi Bisnis (JUNSIBI), 5(1), 30–40. https://doi.org/10.55122/junsibi.v5i1.1146

Pratiwi, S. A., & Ginting, S. H. N. (2024). Penerapan Algoritma k-means dalam Data Mining untuk Mengidentifikasi Strategi Promosi di Politeknik Ganesha Medan. Jurnal & Penelitian Manajemen Informatika Polgan (MINFO POLGAN), 13(1), 189–196. https://doi.org/10.33395/jmp.v13i1.13509

Prayoga, Y., Mahmudi, A., & Zahro, H. Z. (2021). Penerapan Metode K-Means Pada Sistem Informasi Akademik Untuk Pengelompokkan Siswa Berprestasi Di UPT SMA NEGERI 3 Kota Pasuruan Berbasis Web. Jurnal Mahasiswa Teknik Informatika (JATI), 5(2), 822–828.

Pujiono, S., Astuti, R., & Basysyar, F. M. (2024). Implementation of Data Mining to Identify Product Sales Patterns Using K-Means Clustering. Jurnal Mahasiswa Teknik Informatika (JATI), 8(1), 615–620. https://doi.org/10.36040/jati.v8i1.8360

Rachmatin, D. (2014). Aplikasi Metode-Metode Agglomerative Dalam Analisis Klaster Pada Data Tingkat Polusi Udara. Infinity Journal, 3(2). https://doi.org/10.22460/infinity.v3i2.p133-149

Ridzki, M. M., Hadijah, I., Mukidin, M., Azzahra, A., & Nurjanah, A. (2023). K-Means Algorithm Method for Clustering Best-Selling Product Data at XYZ Grocery Stores. International Journal of Social Service and Research (IJSSR), 3(8), 3354–3367. https://doi.org/10.46799/ijssr.v3i12.652

Setianingsih, N. A. (2021). Manifestasi Hybrid Learning di Masa Pandemi. Sabda Cinta: Persembahan DPD ADRI Jawa Timur untuk Khasanah Tridharma.

Shedriko, & Firdaus, M. (2022). Penentuan Klasifikasi Dengan CRISP-DM dalam Memprediksi Kelulusan Mahasiswa pada Suatu Mata Kuliah. Seminar Nasional Riset Dan Teknologi (SEMNAS RISTEK). https://doi.org/10.30998/semnasristek.v6i1.5814

Tarigan, N. L. L., Wijaya, P. S. M., Wahyuni, Y., & Sulistyowati, E. (2024). Analisis Tingkat Loyalitas Konsumen Generasi Z terhadap Marketplace di Indonesia Menggunakan Metode NPS (Net Promoter Score). Jurnal Manajemen Strategis (MANTRA), 1(1), 21–34. https://doi.org/10.30588/jmt.v1i01.1222

TIM DPD ADRI Jawa Timur. (2021). Persembahan DPD ADRI Jawa Timur untuk Khasanah Tridharma di Masa Pandemi.

Verawati, V., & Desprayoga, D. (2019). Solusi Pembelajaran 4.0: Hybrid Learning. Prosiding Seminar Nasional Pendidikan Program Pascasarjana UNIVERSITAS PGRI PALEMBANG. https://jurnal.univpgri-palembang.ac.id/index.php/Prosidingpps/article/view/2739

Widyastuti, A. (2021). Optimalisasi Pembelajaran Jarak Jauh (PJJ), Daring Luring, BDR. Elex Media Komputindo.

Wiemer, H., Drowatzky, L., & Ihlenfeldt, S. (2018). Data Mining Methodology for Engineering Applications (DMME)—A Holistic Extension to the CRISP-DM Model. In Science Direct, (12th CIRP Conference on Intelligent Computation in Manufacturing Engineering. Gulf of Naples, Italy. https://doi.org/https://doi.org/10.3390/app9122407

Downloads

Published

2025-12-06

How to Cite

Purwati, N., & Kriswantoro, M. C. (2025). Accuracy of Learning Method Implementation in Higher Education Using K-Means Clustering and Silhouette Coefficient. Open Science and Technology, 5(2), 75–89. https://doi.org/10.33292/ost.v5i2.159