Tanaman mahoni (Swietenia Macrophylla) sebagai bioindikator pencemaran udara khususnya logam Pb, Cu, Zn di Universitas Islam Indonesia

Authors

  • Divia Septirizqia Salsabil Universitas Islam Indonesia, Indonesia
  • Suphia Rahmawati Universitas Islam Indonesia, Indonesia
  • Lutfia Isna Ardhayanti Universitas Islam Indonesia, Indonesia

DOI:

https://doi.org/10.33292/ost.vol1no2.2021.33

Keywords:

Bioindikator, Cu, Mahoni, Pb, Zn

Abstract

Aktivitas kendaraan bermotor seperti penggunaan bahan bakar dan rem menjadi salah satu penyumbang pencemar udara seperti logam berat. Mahoni (Swietenia macrophylla) selain digunakan sebagai tanaman peneduh juga dapat berfungsi sebagai filter udara dengan menyerap polutan disekitarnya. Studi ini bertujuan untuk mengetahui apakah Mahoni dapat dijadikan sebagai bioindikator pencemaran udara khususnya logam Pb, Cu, dan Zn. Sampel daun Mahoni, udara, dan tanah diambil di lingkungan kampus Universitas Islam Indonesia Jl. Kaliurang Km 14.5. kemudian sampel didestruksi menggunakan HNO3 dan dianalisis menggunakan Spektrofotometer Serapan Atom (SSA). Hasil penelitian menunjukkan bahwa konsentrasi Cu dan Pb pada sampel daun Mahoni berkorelasi dengan konsentrasi Pb pada sampel udara dengan nilai korelasi 0,76. Sedangkan untuk logam Cu dan Zn menunjukkan korelasi dengan sampel tanah sebesar 0,93 dan 0,83.

Vehicle activities such as fuel and brakes contribute to air pollutants such as heavy metals. Mahogany (Swietenia macrophylla), apart from being used as a shade plant, can also function as an air filter by absorbing surrounding pollutants. This study aims to determine whether Mahogany can be used as a bioindicator of air pollution, especially Pb, Cu, and Zn metals. Mahogany leaves, air, and soil samples were taken at the Universitas Islam Indonesia, Jl. Kaliurang Km 14.5 Sleman Yogyakarta Indonesia. then the sample was destructed using HNO3 and analyzed using Atomic Absorption Spectrophotometer (AAS). Results showed that the concentrations Pb in the mahogany leaf samples were correlated with the concentrations Pb in the air samples with correlation values of 0.76. Meanwhile, the Cu and Zn concentration of Mahogany leaves correlated with the Cu and Zn concentration of the soil sample of 0.93 and 0.83.

Author Biographies

Divia Septirizqia Salsabil, Universitas Islam Indonesia, Indonesia

Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia

Suphia Rahmawati, Universitas Islam Indonesia, Indonesia

Laboratorium Analisis Risiko Lingkungan, Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia

Lutfia Isna Ardhayanti, Universitas Islam Indonesia, Indonesia

Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia

References

Aini, F., Mardiyah, S., Wahyuni, F., Millah, A. U., & Ihsan, M. (2018). Kajian

Tanaman Penyerap Timbal (Pb) dan Pengikat Karbon di Lingkungan Kampus

Universitas Jambi. BIOSITE |BIOLOGI Sains Terapan, 3(2), 54–60.

https://doi.org/10.22437/bs.v3i2.4603

Aksu, A. (2015). Sources of metal pollution in the urban atmosphere (A case study:

Tuzla, Istanbul). Journal of Environmental Health Science and Engineering, 13(1),

–10. https://doi.org/10.1186/s40201-015-0224-9

ATSDR. (1990). Chromium (VI) REGULATIONS , ADVISORIES , AND

GUIDELINES. Agency for Toxic Substances and Disease Registry, Vi, 417–425.

Çelik, A., Kartal, A. A., Akdo?an, A., & Kaska, Y. (2005). Determining the heavy

metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L.

Environment International, 31(1), 105–112.

https://doi.org/10.1016/j.envint.2004.07.004

Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants

and bioremediation methods. Applied and Environmental Soil Science, 2014.

https://doi.org/10.1155/2014/752708

Des, M., Vauzia, & Gusti, Y. S. (2020). Characteristics of Mahogany Stomata

(Swietenia macrophylla K.) in Polluted Environments. 10(ICoBioSE 2019), 39–42.

https://doi.org/10.2991/absr.k.200807.009

Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants :

uptake , transport , translocation and accumulation. Reviews in Environmental

Science and Bio/Technology. https://doi.org/10.1007/s11157-016-9390-1

Harrison, R. M., Tilling, R., Callén Romero, M. S., Harrad, S., & Jarvis, K. (2003). A

study of trace metals and polycyclic aromatic hydrocarbons in the roadside

environment. Atmospheric Environment, 37(17), 2391–2402.

https://doi.org/10.1016/S1352-2310(03)00122-5

Kurniati, C. (2015). Evaluasi nilai APTI dan API pada Swietenia macrophylla dan

Agathis dammara yang terdapat di Kampus ITB Ganesha, Bandung. 1, 1610–

https://doi.org/10.13057/psnmbi/m010712

Miri, M., Rostami Aghdam Shendi, M., Ghaffari, H. R., Ebrahimi Aval, H., Ahmadi, E.,

Taban, E., Gholizadeh, A., Yazdani Aval, M., Mohammadi, A., & Azari, A.

(2016). Investigation of outdoor BTEX: Concentration, variations, sources, spatial

distribution, and risk assessment. Chemosphere, 163, 601–609.

https://doi.org/10.1016/j.chemosphere.2016.07.088

Mukhtar, R., Wahyudi, H., Hamonangan Panjaitan, E., Lahtiani, S., Santoso, M.,

Dwiana Lestiani, D., & Kurniawati, S. (2013). Kandungan Logam Berat Dalam

Udara Ambien Pada Beberapa Kota Di Indonesia. Jurnal Ecolab, 7(2), 49–59.

https://doi.org/10.20886/jklh.2013.7.2.49-59

Neiburger, M., Edinger, J. G., & Bonner, W. D. (1982). Understanding our atmospheric

environment. Understanding Our Atmospheric Environment.

https://doi.org/10.1016/0016-7185(75)90059-7

Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest

effects on air quality and human health in the United States. Environmental

Pollution, 193, 119–129. https://doi.org/10.1016/j.envpol.2014.05.028

Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental

Pollution, 159(12), 3560–3570. https://doi.org/10.1016/j.envpol.2011.08.008

Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., & Shamshad, S. (2020). Copper uptake,

essentiality, toxicity, detoxification and risk assessment in soil-plant environment.

ECSN, 127436. https://doi.org/10.1016/j.chemosphere.2020.127436

Sulistijorini, Mas’ud, Z. A., Nasrullah, N., Bey, A., & Tjitrosemito, S. (2008).

Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth

Rate and Air Pollution Tolerance Index. HAYATI Journal of Biosciences, 15(3),

–129. https://doi.org/10.4308/hjb.15.3.123

Downloads

Published

2021-12-30

How to Cite

Salsabil, D. S., Rahmawati, S., & Ardhayanti, L. I. (2021). Tanaman mahoni (Swietenia Macrophylla) sebagai bioindikator pencemaran udara khususnya logam Pb, Cu, Zn di Universitas Islam Indonesia. Open Science and Technology, 1(2), 217–229. https://doi.org/10.33292/ost.vol1no2.2021.33