Tanaman mahoni (Swietenia Macrophylla) sebagai bioindikator pencemaran udara khususnya logam Pb, Cu, Zn di Universitas Islam Indonesia
DOI:
https://doi.org/10.33292/ost.vol1no2.2021.33Keywords:
Bioindikator, Cu, Mahoni, Pb, ZnAbstract
Aktivitas kendaraan bermotor seperti penggunaan bahan bakar dan rem menjadi salah satu penyumbang pencemar udara seperti logam berat. Mahoni (Swietenia macrophylla) selain digunakan sebagai tanaman peneduh juga dapat berfungsi sebagai filter udara dengan menyerap polutan disekitarnya. Studi ini bertujuan untuk mengetahui apakah Mahoni dapat dijadikan sebagai bioindikator pencemaran udara khususnya logam Pb, Cu, dan Zn. Sampel daun Mahoni, udara, dan tanah diambil di lingkungan kampus Universitas Islam Indonesia Jl. Kaliurang Km 14.5. kemudian sampel didestruksi menggunakan HNO3 dan dianalisis menggunakan Spektrofotometer Serapan Atom (SSA). Hasil penelitian menunjukkan bahwa konsentrasi Cu dan Pb pada sampel daun Mahoni berkorelasi dengan konsentrasi Pb pada sampel udara dengan nilai korelasi 0,76. Sedangkan untuk logam Cu dan Zn menunjukkan korelasi dengan sampel tanah sebesar 0,93 dan 0,83.
Vehicle activities such as fuel and brakes contribute to air pollutants such as heavy metals. Mahogany (Swietenia macrophylla), apart from being used as a shade plant, can also function as an air filter by absorbing surrounding pollutants. This study aims to determine whether Mahogany can be used as a bioindicator of air pollution, especially Pb, Cu, and Zn metals. Mahogany leaves, air, and soil samples were taken at the Universitas Islam Indonesia, Jl. Kaliurang Km 14.5 Sleman Yogyakarta Indonesia. then the sample was destructed using HNO3 and analyzed using Atomic Absorption Spectrophotometer (AAS). Results showed that the concentrations Pb in the mahogany leaf samples were correlated with the concentrations Pb in the air samples with correlation values of 0.76. Meanwhile, the Cu and Zn concentration of Mahogany leaves correlated with the Cu and Zn concentration of the soil sample of 0.93 and 0.83.
References
Aini, F., Mardiyah, S., Wahyuni, F., Millah, A. U., & Ihsan, M. (2018). Kajian
Tanaman Penyerap Timbal (Pb) dan Pengikat Karbon di Lingkungan Kampus
Universitas Jambi. BIOSITE |BIOLOGI Sains Terapan, 3(2), 54–60.
https://doi.org/10.22437/bs.v3i2.4603
Aksu, A. (2015). Sources of metal pollution in the urban atmosphere (A case study:
Tuzla, Istanbul). Journal of Environmental Health Science and Engineering, 13(1),
–10. https://doi.org/10.1186/s40201-015-0224-9
ATSDR. (1990). Chromium (VI) REGULATIONS , ADVISORIES , AND
GUIDELINES. Agency for Toxic Substances and Disease Registry, Vi, 417–425.
Çelik, A., Kartal, A. A., Akdo?an, A., & Kaska, Y. (2005). Determining the heavy
metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L.
Environment International, 31(1), 105–112.
https://doi.org/10.1016/j.envint.2004.07.004
Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants
and bioremediation methods. Applied and Environmental Soil Science, 2014.
https://doi.org/10.1155/2014/752708
Des, M., Vauzia, & Gusti, Y. S. (2020). Characteristics of Mahogany Stomata
(Swietenia macrophylla K.) in Polluted Environments. 10(ICoBioSE 2019), 39–42.
https://doi.org/10.2991/absr.k.200807.009
Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants :
uptake , transport , translocation and accumulation. Reviews in Environmental
Science and Bio/Technology. https://doi.org/10.1007/s11157-016-9390-1
Harrison, R. M., Tilling, R., Callén Romero, M. S., Harrad, S., & Jarvis, K. (2003). A
study of trace metals and polycyclic aromatic hydrocarbons in the roadside
environment. Atmospheric Environment, 37(17), 2391–2402.
https://doi.org/10.1016/S1352-2310(03)00122-5
Kurniati, C. (2015). Evaluasi nilai APTI dan API pada Swietenia macrophylla dan
Agathis dammara yang terdapat di Kampus ITB Ganesha, Bandung. 1, 1610–
https://doi.org/10.13057/psnmbi/m010712
Miri, M., Rostami Aghdam Shendi, M., Ghaffari, H. R., Ebrahimi Aval, H., Ahmadi, E.,
Taban, E., Gholizadeh, A., Yazdani Aval, M., Mohammadi, A., & Azari, A.
(2016). Investigation of outdoor BTEX: Concentration, variations, sources, spatial
distribution, and risk assessment. Chemosphere, 163, 601–609.
https://doi.org/10.1016/j.chemosphere.2016.07.088
Mukhtar, R., Wahyudi, H., Hamonangan Panjaitan, E., Lahtiani, S., Santoso, M.,
Dwiana Lestiani, D., & Kurniawati, S. (2013). Kandungan Logam Berat Dalam
Udara Ambien Pada Beberapa Kota Di Indonesia. Jurnal Ecolab, 7(2), 49–59.
https://doi.org/10.20886/jklh.2013.7.2.49-59
Neiburger, M., Edinger, J. G., & Bonner, W. D. (1982). Understanding our atmospheric
environment. Understanding Our Atmospheric Environment.
https://doi.org/10.1016/0016-7185(75)90059-7
Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest
effects on air quality and human health in the United States. Environmental
Pollution, 193, 119–129. https://doi.org/10.1016/j.envpol.2014.05.028
Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental
Pollution, 159(12), 3560–3570. https://doi.org/10.1016/j.envpol.2011.08.008
Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., & Shamshad, S. (2020). Copper uptake,
essentiality, toxicity, detoxification and risk assessment in soil-plant environment.
ECSN, 127436. https://doi.org/10.1016/j.chemosphere.2020.127436
Sulistijorini, Mas’ud, Z. A., Nasrullah, N., Bey, A., & Tjitrosemito, S. (2008).
Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth
Rate and Air Pollution Tolerance Index. HAYATI Journal of Biosciences, 15(3),
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Divia Septirizqia Salsabil, Suphia Rahmawati, Lutfia Isna Ardhayanti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.